I‘aﬁi

on Open Source Imp\emeﬂ., a
Status Update Lessons Learned, and Interop Testing
IETF 104, Prague, RIFT Working Group

Bruno Rijsman, brunorijsman@gmail.com, 24-Mar-2019 v2

RIFT open source implementation

* On GitHub: https://github.com/brunorijsman/rift-python

 Grew out of IETF 102 hackathon

 Original modest goal was to test the LIE FSM
* Work is continuing to become complete RIFT implementation

* Goals:
* Help get the RIFT specification to the point that it is clear and complete
* To be a reference RIFT implementation

» Current emphasis on being a user-friendly, educational, transparent,
debugable reference implementation (rather than raw performance).

* Implemented in Python
* Extensive documentation: README.md
* Not associated with any vendor

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

https://github.com/brunorijsman/rift-python
https://github.com/brunorijsman/rift-python/blob/master/README.md

Getting started with RIFT-Python

https://github.com/brunorijsman/rift-python/blob/master/README.md

build 'passing | codecov

Routing In Fat Trees (RIFT)

This repository contains a Python implementation of the Routing In Fat Trees (RIFT) protocol specified in Internet Draft
(ID) draft-draft-rift-03

The code is currently still a work in progress (see Feature List below for the status).

Documentation

+ Featur Lst e |nstallation Instructions

¢ [nstallation Instructions <«

¢ Command Line Options 9 Sta rtu p | nstru Ctions

e Command Line Interface (CLI)

e Logging

e Log Visualization

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

https://github.com/brunorijsman/rift-python/blob/master/README.md

New: [Pv6 support

* IPv6 adjacencies (LIE packets)
* Always send both IPv4 and IPvé LIE packets (order does not matter)
Every LIE packet is received twice (once on IPv4 an once on IPvé)
LIE FSM must be (and in fact is) “idem-potent”:
Receiving the same LIE packet again must not change state
Sending an IPvé LIE implies that IPvé forwarding is supported (ditto for IPv4)
If a node wants to stop forwarding IPv4/IPvé, the adjacency must be bounced

* IPv6 flooding (TIE, TIDE, TIRE packets)

* Pick either IPv4 or IPvé6 for sending flooding packets
 Based on first LIE packet received (this is implementation choice)
* IPv4 routes can be flooded over IPv6 and vice versa
« Might end up using IPv4 flooding A—B, but IPv6 tflooding B—A
* Hence, must always receive flooding packets on both IPv4 an IPvé
« “Chaos monkey” testing found a bug here

New: [Pv6 support

* IPv6 support very dependent on OS and OS version
* show interface .. sockets command helps debug IPv6 issues

leaf-3-1> show interface

4 4

4

veth-1007a-107a sockets

i Traffic i Direction i Family i Local Address i Local Port i Remote Address | Remote Port i
i LIEs | Receive i IPv4 i 224.0.0.120 i 10000 i Any i Any i
i LIEs i Receive i IPv6 i ff02::78%veth-1007a-107a i 10000 i Any i Any i
i LIEs i Send i IPv4] 99,37.38.37 i 41761 i 224.0.0.120 i 10000 i
i LIEs i Send i IPv6 i fe80::648e:c4ff:fed7: fcb7%veth-1007a-107a i 44996 i ff02::78%veth-1007a-107a i 10000 i
i Flooding i Receive i IPv4 i 99,37.38.37 i 10001 i Any i Any i
| Flooding i Receive i IPv6 i fe80::648e:c4ff:fed7: fcb7%veth-1007a-107a i 10001 i Any i Any i
I i IPv4 i i 10001 |

Flooding | Send

99.37.38.37 | 46850 | 99.37.38.38

24-Oct-2018 v1

RIFT Open Source Implementation Update (Bruno Rijsman)

New: Flooding reduction

* Implemented the “example” algorithm in draft (which is complex
» Other implementations are free to choose different algorithm
* show flooding-reduction command for debugging:

leaf-3-1> show flooding-reduction

Parents:

| Interface | Parent | Parent | Grandparent | Similarity | Flood |

| Name | System ID | Interface | Count | Group | Repeater |

| | | Name | | [|

| veth-1007a-107a | 107 | spine-3-1:veth-107a-1007a | 2 | 1: 3-2 | True |

| veth-1007c-109a | 109 | spine-3-3:veth-109a-1007c | 3 | 1: 3-2 | True |

| veth-1007b-108a | 108 | spine-3-2:veth-108a-1007b | 2 | 1: 3-2 | False |

Grandparents:

| Grandparent | Parent | Flood | Redundantly |

| System ID | Count | Repeater | Covered |

| | | Adjacencies | |

| 2 | 3 | 2 | True |

| 3 |1 | 1 | False |

| 4 | 3 | 2 | True |

Interfaces:

Interface	Neighbor	Neighbor	Neighbor	Neighbor	Neighbor is	This Node is
Name	Interface	System ID	State	Direction	Flood Repeater	Flood Repeater
	Name				for This Node	for Neighbor
veth-1007a-107a	spine-3-1:veth-107a-1007a	107	THREE_WAY	North	True	Not Applicable
veth-1007b-108a	spine-3-2:veth-108a-1007b	108	THREE_WAY	North	False	Not Applicable
veth-1007c-109a	spine-3-3:veth-109a-1007c	109	TWO_WAY	North	True	Not Applicable

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

New: Shortest Path First (SPF

» Separate north-bound and south-bound SPFs
* show spf command for debugging:

spine-1-1> show spf
SPF Statistics:

| SPF Runs | 1193 |

| SPF Deferrals | 9848 |

South SPF Destinations:

| Destination | Cost | Predecessor | Tags | IPv4 Next-hops | IPv6 Next—hops |
| | | System IDs | | | |

| 101 (spine-1-1)

| 0 I |
| 1002 (leaf-1-2) | 1 | 101 | | veth-101b-1002a 99.7.8.7 | veth-101b-1002a fe80::3477:5cff:fe85:68fd |
| 88.0.2.1/32 | 2 | 1002 | | veth-101b-1002a 99.7.8.7 | veth-101b-1002a fe80::3477:5cff:fe85:68fd |

| 88.1.1.1/32 | 1 | 101 | | | I

North SPF Destinations:
| Destination | Cost | Predecessor | Tags | IPv4 Next-hops | IPv6 Next-hops |
| | | System IDs | | | |

| 101 (spine-1-1) | @ I | | I I

| 88.1.1.1/32 |1 | 101 | | I I

+ + + + + +
t t t t t t

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

New: Routing Information Base (RIB)

e IPv4 and IPvé
* ECMP support
 show routes commands to see contents of RIB:

spine-1-1> show routes
IPv4 Routes:

| Prefix | Owner | Next-hops

4 4
1 1

| 0.0.0.0/0 | North SPF | veth-101f-3a 99.91.92.91

!
!

IPv6 RouteS'

Prefix | Owner | Next-hops

L

| | veth-101f-3a fe80::f8f6:86ff:felb:742d

I |
| /0 | North SPF | veth-10le-2a fe80::5077:c3ff:fee8:1b36 |
| |
| | | veth-101g-4a fe80::2062:a5ff:fel8:5b77 |

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

New: Forwarding Information Base (FIB)

* Route which will be installed into kernel
« show forwarding commands to see contents of FIB:

spine-1-1> show forwarding
IPv4 Routes:

4 -t .

| Prefix | Owner | Next-hops |
0.0.0.0/0 North SPF | veth-101f-3a 99.91.92.91 |

|
| | veth-101g-4a 99.109.110.109 |

|
|
| 88.0.1.1/32 | South SPF | veth-101a-1001a 99.1.2.1 |

| 88.0.2.1/32 | South SPF | veth-101b-1002a 99.7.8.7 |

e
T

IPv6 Routes:

Prefix | Owner | Next-hops |

e .

| veth-101f-3a fe80::f8f6:86ff:fel6:742d |

|

| ::/0 | North SPF | veth-101d-1la fe80::9079:71ff:fe08:728e |
| |

| | | veth-101g-4a fe80::2062:a5ff:fel8:5b77 |

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

New: Install Routes into Kernel

e show kernel routes commands to see routes in kernel:

spine-1-1> show kernel routes table main
Kernel Routes:

4 4

4

| Table |

Address | Destination

i Type i Protocol i Outgoing i Gateway i Weight i
| | Family | | | | Interface | | |
i Main i IPv4 i 99.1.2.0/24 i Unicast i Kernel i veth-101a-1001a i i i
i Main i IPv4 i 99.7.8.0/24 i Unicast i Kernel i veth-101b-1002a i i i
i Main i IPv4 i 99.13.14.0/24 i Unicast i Kernel i veth-101c-1003a i i i
i Main i IPv4 i 99.55.56.0/24 i Unicast i Kernel i veth-101d-1a i i i
i Main i IPv4 i 99.73.74.0/24 i Unicast i Kernel i veth-101le-2a i i i
i Main i IPv4 i 99.91.92.0/24 i Unicast i Kernel i veth-101f-3a i i i
i Main i IPv4 i 99.109.110.0/24 i Unicast i Kernel i veth-101g-4a i i i
i Main i IPv6 i 1:/0 i Unicast i RIFT i veth-101f-3a i fe80::f8f6:86ff: felb:742d i i
i Main i IPv6 i 1:/0 i Unicast i RIFT i veth-101g-4a i fe80::2062:a5ff: fel8:5b77 i i
i Main i IPv6 i fe80::/64 i Unicast i Kernel i veth-101a-1001a i i i
T Main T TPvA T frR0: : /R4 T lInicact T Kernel T veth-101h-1002A T T T

24-Oct-2018 v1

RIFT Open Source Implementation Update (Bruno Rijsman)

10

New: Extensive Statistics

Statistics per interface, per node, per engine

Packet count and rates, byte count and rates
FSM events and transitions

Show commands with exclude-zero option, clear commands

spine-1-1> show interface veth-10le-2a statistics

Traffic:

Description	Value	Last Rate	Last Change
		Over Last 10 Changes	
RX IPv4 LIE Packets	258 Packets, 39064 Bytes	0.07 Packets/Sec, 9.79 Bytes/Sec	0d 00h:00m:14.91s

| TX IPv4 LIE Packets 5150 Packets, 792080 Bytes 0.75 Packets/Sec, 115.02 Bytes/Sec 0d 00h:00m:00.26s

RX IPv4 TIE Packets 17 Packets, 5256 Bytes 0.00 Packets/Sec, 1.31 Bytes/Sec 0d 00h:02m:28.51s

e
T
.
T
-
T

RX IPv4 TIDE Packets 36 Packets, 77112 Bytes 0.00 Packets/Sec, 10.70 Bytes/Sec 0d 00h:00m:12.06s

e
T

! ! !
! ! !
TX IPv4 TIE Packets i 1074 Packets, 320971 Bytes i 10.53 Packets/Sec, 3115.93 Bytes/Sec i 0d 00h:00m:03.37s
! ! !
| |

| TX IPv4 TIDE Packets 323 Packets, 252586 Bytes | 9.09 Packets/Sec, 69.55 Bytes/Sec 0d 00h:00m:03.53s

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

—t—+— + — +— 4+

11

New: Chaos testing framework

Described in IETF 104 hackathon readout presentation

Restart Break
node 2 link 1
Repai Kill
link 1 ode 1
Repai Break
link 2 link 2
Kill Restart
de 2 ode 1

Proposal to implement RIFT in FRR

» Free Range Routing (FRR) is open source routing stack:
nttps://frrouting.org/

* FRR community is considering implementing RIFT on FRR

* Code would be in C and open source

* The work would be done by NetDEF (a 501c3)
https://www.netdef.org/

* Bruno Rijsman (author of RIFT-Python) would be main implementer

« Completely new implementation in C on FRR infrastructure, but
re-using experience gained from RIFT-Python implementation

* Expose YANG data structures using new FRR north-bound APIs

* Looking for additional sponsorship. Contact Alistair Woodman
(awoodman@netdef.org or in person here at IETF)if interested.

https://frrouting.org/
https://www.netdef.org/

Current status summary

Feature group Completeness estimate

Adjacencies B 85%

Zero touch provisioning (ZTP) _ 100%
Flooding — I
Route calculation B 50%
Management interface e B /5%
Development toolchain B A

l Was already completed at IETF 103

Newly completed at IETF 104

l Not yet completed
Note: all estimates are a finger in the wind estimates

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 14

Current status: adjacencies

Not Complets

Exchange LIE packets New multi-neighbor state
LIE finite state machine Interactions with BFD
IPv4 adjacencies Security envelope

Interoperability with vendor RIFT
IPv6 adjacencies

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 15

Current status: Zero Touch Provisioning (ZTP)

Not Complets

ZTP finite state machine _
Automatic level determination
Interoperability with vendor RIFT

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 16

Current status: flooding

Not Complets

Exchange TIE / TIDE / TIRE packets Efficient TIE propagation (w/o decode)
Node TIEs Positive disaggregation TIEs

Prefix TIEs Negative disaggregation TIEs

TIE database Key-value TIEs

TX/RTX/REQ / ACK queues External TIEs

Flooding procedures Policy-guided prefixes

Flooding scope rules (N, S, EW) Setting sent overload bit

South-bound default route origination Clock comparison

Honoring received overload bit
Interoperability with vendor RIFT

IPv6 flooding
Flooding reduction

Note: large bold font indicates changes since IETF-103

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 17

Current status: route calculation

Not Complets

Routing Information Base (RIB) East-west forwarding

Forwarding Information Base (FIB) Positive disaggregation procedures
9 Negative disaggregation procedures

North-bound SPF Fabric bandwidth balancing

South-bound SPF Label binding / segment routing

IPv4 and IPv6 Multicast *

Optimized route calculation on leafs

ECMP

* = Not yet clear whether or not this will be included in the RIFT draft

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 18

Current status: management

Not Complets

Configuration file On-the-fly config commands SSH CLI client *

Telnet CLI client Command help Command completion

Operational commands Statistics YANG data models *

LIGEIE R Granular debugging / tracing
Multi-node topologies

Logging

Command history

* = Currently not planning to implement this

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 19

Current status: development toolchain

Not Complets

Automated unit tests 100% code coverage
Automated system tests Wireshark dissector / standalone pcap

Automated interop tests
Travis continuous integration (Cl)

Strict pylint
Finite state machine (FSM) framework

Visualization tool
Codecov code coverage (~ 85%)

Topology generation tool
Network namespace-based topologies
Chaos monkey

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 20

