
RIFT Open Source Implementation
Status Update, Lessons Learned, and Interop Testing

Bruno Rijsman, 23-Oct-2018, v1



RIFT open source implementation

2

• On GitHub: https://github.com/brunorijsman/rift-python
• Grew out of IETF 102 hackathon
• Original modest goal was to test the LIE FSM
• Work is continuing to become complete RIFT implementation

• Goals:
• Help get the RIFT specification to the point that it is clear and complete
• To be a reference RIFT implementation

• Current emphasis on debuggability, not performance
• Implemented in Python
• Extensive documentation: README.md
• Not associated with any vendor

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

https://github.com/brunorijsman/rift-python
https://github.com/brunorijsman/rift-python/blob/master/README.md


Getting started with RIFT-Python

324-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

https://github.com/brunorijsman/rift-python/blob/master/README.md

https://github.com/brunorijsman/rift-python/blob/master/README.md


Current status summary

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 4

Feature group Completeness estimate
Adjacencies ████████████████████ 75% 
Zero touch provisioning (ZTP) ████████████████████ 100%
Flooding ████████████████████ 50%
Route calculation ████████████████████ 0%
Management interface ████████████████████ 50%
Development toolchain ████████████████████ 75% 

Note: all estimates are a finger in the wind estimates



Current status: adjacencies

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 5

Complete Not Complete
Exchange LIE packets
LIE finite state machine
IPv4 adjacencies
Interoperability with vendor RIFT

IPv6 adjacencies
New multi-neighbor state
Interactions with BFD
Security procedures (nonce)



Current status: Zero Touch Provisioning (ZTP)

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 6

Complete Not Complete
ZTP finite state machine
Automatic level determination
Interoperability with vendor RIFT

-



Current status: flooding

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 7

Complete Not Complete
Exchange TIE / TIDE / TIRE packets
Node TIEs
Prefix TIEs
TIE database
TX / RTX / REQ / ACK queues
Flooding procedures
Flooding scope rules (N, S, EW)
South-bound default route origination
Honoring received overload bit
Interoperability with vendor RIFT

Efficient TIE propagation (w/o decode)
Positive disaggregation TIEs
Negative disaggregation TIEs
Key-value TIEs
External TIEs
Policy-guided prefixes
Setting sent overload bit
Clock comparison



Current status: route calculation 

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 8

Complete Not Complete
- Routing Information Base (RIB)

Forwarding Information Base (FIB)
North-bound SPF
South-bound SPF
East-west forwarding
Positive disaggregation procedures
Negative disaggregation procedures
Optimized route calculation on leafs
Fabric bandwidth balancing
Label binding / segment routing



Current status: management

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 9

Complete Partial Not Complete
Configuration file
Telnet CLI client
Operational commands
Documentation
Multi-node topologies
Logging

Configuration commands
Command history
Command help

SSH CLI client
Command completion
YANG data models



Current status: development toolchain

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman) 10

Complete Not Complete
Automated unit tests
Automated system tests
Automated interop tests
Travis continuous integration (CI)
Codecov code coverage (~ 80%)
Strict pylint
Finite state machine (FSM) framework
Visualization tool

100% code coverage
Wireshark dissector



Protocol issues discovered (and fixed)

11

• Multi-neighbor oscillation
• Connecting 3 RIFT nodes to a LAN causes traffic spike (LIEs)
• Two flavors: amplified and non-amplified
• Caused by “triggered loops” in the finite state machine
• Solution: new multi-neighbor state

• Flooding oscillations
• In stable topology, you should only see TIDEs, not TIREs or TIEs
• We observed persistent “oscillations” of TIRE and TIE messages
• Various variations of the problem observed
• Solution for now: tweak the flooding scope rules
• Considered for future: explicit flooding scope in TIE header

• Other minor issues (not discussed here)

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)



1224-Oct-2018 v1

Multi-neighbor scenario

Node X Node ZNode Y

Multi-point LAN is not supported by RIFT
But could happen by accident.
How does the protocol behave?



1324-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

Multi-neighbor traffic explosion

Connect 3 nodes to LAN:
Traffic spikes to line rate
All LIE messages



Multi-neighbor amplified oscillation

1424-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)



Cause of multi-neighbor oscillation

1524-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

X receives LIE from Z
Event Multi-Neighbor
Action Multicast LIE to Y and Z

X receives LIE from Y
Event New Neighbor
Action Multicast LIE to Y and Z

State
ONE WAY

State
TWO WAY

Each Cycle:
• X receives 1 LIE from Y
• X receives 1 LIE from Z
• X multicasts 2 LIEs
• Each is received by both Y and Z
• Y sends 1 LIE, receives 2 LIEs from X

(and also 2 LIEs from Y)
• Z sends 1 LIE, receives 2 LIEs from X

(and also 2 LIEs from Y)
• All actions triggers by packets
• No timers involved



Cause of multi-neighbor oscillation

1624-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

Exponential growth of number 
of LIE messages

FSM oscillates as fast as it can, 
not constrained by timer ticks

Each Cycle:
• X receives 1 LIE from Y
• X receives 1 LIE from Z
• X multicasts 2 LIEs
• Each is received by both Y and Z
• Y sends 1 LIE, receives 2 LIEs from X

(and also 2 LIEs from Y)
• Z sends 1 LIE, receives 2 LIEs from X

(and also 2 LIEs from Y)
• All actions triggers by packets
• No timers involved



Solution: new multi-neighbor state

1724-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

X receives LIE from Z
Event Multi-Neighbor

X receives LIE from Y
Event New Neighbor

State
ONE WAY

State
TWO WAY

State
MULTI-NEIGHBOR

“Cool-down” timer expires



Flooding oscillation #1

1816-Oct-2018 v1.2 Flooding Oscillations (Bruno Rijsman)

Node 1
Level 1
North

Node 2
Level 0
South

TIDE

TIE

TIRE TIDE

TIE

TIDE

TIE

TIDE

TIE

TIDE

TIE

TIRE TIRE TIRE TIRE



Flooding oscillation #1

1916-Oct-2018 v1.2 Flooding Oscillations (Bruno Rijsman)

Node 1
Level 1
North

Node 2
Level 0
South

TIDE
TIE

TIRE TIDE

TIE

TIDE

TIE

TIDE

TIE

TIDE

TIE

TIRE TIRE TIRE TIRE

Step 1: Node 2 send TIE
Dir = North
Originator = 2
Type = Node
TIE Nr = xxx
Seq Nr = yyy

Step 2: Node 1 sends TIRE
ACKs received TIE
North:2:Node:xxx:yyy

Step 3: Node 1 sends TIDE
Is missing TIE header:
North:2:Node:xxx:yyy

Step 4: Node 1 sends TIDE
Node 1 retransmits TIE
Back to step 1



2024-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

Node 1
Level 1
North

Node 2
Level 0
South

TIDE

TIRE

Flooding oscillation #2

TIRE TIRE TIRE TIRE TIRE TIRE TIRE

TIDE



2124-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

Node 1
Level 1
North

Node 2
Level 0
South

TIDE

TIRE

Flooding oscillation #2

TIRE TIRE TIRE TIRE TIRE TIRE TIRE

TIDE

Step 1: Node 1 send TIDE
Announces a TIE header:
North:1:Node:xxx:yyy

Step 2: Node 2 sends TIRE
Node 2 does not have TIE
Node 2 requests TIE

Step 3: Node 1 does NOT send TIE
The flooding scope rules don’t allow 
node 1 to send the requested TIE

Step 4: Node 3 resends TIRE
Node 1 retransmits TIRE
Back to step 2



Solution for flooding oscillations

22

• The flooding scope rules are “sensitive”
• A tiny change in the rules can have unanticipated consequences 

(e.g. oscillations)
• The rules for TIE flooding, TIDE contents, and TIRE contents must 

be consistent (which much more non-trivial than one would guess)

• Solution for now: tweak the flooding scope rules
• Considered for future: explicit flooding scope in TIE header
• For more details see http://bit.ly/rift-flooding-oscillations

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)

http://bit.ly/rift-flooding-oscillations


Interoperability testing

23

• Run RIFT-Vendor in one process (publicly available)
• Run RIFT-Python in another process
• Both use common “topology file”
• Specifies the topology of the complete ”network under test”
• Specifies which nodes are run by RIFT-Vendor and which by RIFT-Python

• Interoperability testing is fully automated
• Run full suite of system tests
• For each system test, try all permutations of Vendor / Python nodes

• So far, successfully completed interop testing for:
• Adjacency establishment and automatic level determination
• Flooding (not automated yet)

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)



Conclusions

24

• Open source RIFT-Python implementation has helped the draft 
progress
• Editorial improvements
• Protocol improvements

• Interoperability testing at a very early stage has flushed out issues
• Visualization tool is essential to understand the protocol behavior
• Weekly RIFT calls are essential (the deep discussions happen here)
• Additional contributors  (pull requests) for RIFT-Python are welcome

24-Oct-2018 v1 RIFT Open Source Implementation Update (Bruno Rijsman)


