RIFT Open Source Ipei@mehitatior
Status Upaate, Lesso Leag ol esting

RIFT open source implementation

» On GitHub: https://qgithub.com/brunorijsman/rift-python

e Grew out of IETF 102 hackathon

 Original modest goal was to test the LIE FSM
« Work is continuing to become complete RIFT implementation

* Goals:
« Help get the RIFT specification to the point that it is clear and complete
 To be a reference RIFT implementation

* Current emphasis on debuggability, not performance

* Implemented in Python
e Extensive documentation: README.md

https://github.com/brunorijsman/rift-python
https://github.com/brunorijsman/rift-python/blob/master/README.md

Getting started with RIFT-Python

https://github.com/brunorijsman/rift-python/blob/master/README.md

Routing In Fat Trees (RIFT)

This repository contains a Python implementation of the Routing In Fat Trees (RIFT) protocol specified in Internet Draft
(ID) draft-draft-rift-03

The code is currently still a work in progress (see Feature List below for the status).

Documentation

+ Feature Lis e |nstallation Instructions

¢ [nstallation Instructions <

¢ Startup Instructions
e Command Line Options

e Startup Instructions

e Command Line Interface (CLI)

e Logging

e Log Visualization [

RIET OpentSource Implemehtajtion?“ te

https://github.com/brunorijsman/rift-python/blob/master/README.md

Current status summary

Adjacencies A 75%
Zero touch provisioning (ZTP) _ 100%
Flooding I 50%
Route calculation D 0%

Management interface e 0%
Development toolchain e 5%

Note all estimates are a fmger in the wind estimates

== ‘ﬁ

RIFT Opei‘w Source Implementatl Up@ate (Bruno‘ijsman

Current status: adjacencies

Exchange LIE packets IPv6 adjacencies

LIE finite state machine New multi-neighbor state
IPv4 adjacencies Interactions with BFD
Interoperability with vendor RIFT Security procedures (nonce)

-

Upee e (BrunoRijsman) L
e o ~ . B ¢ 4

Current status: Zero Touch Provisioning (ZTP)

Not Complets

ZTP finite state machine -
Automatic level determination
Interoperability with vendor RIFT

Current status: flooding

Not Complets

Exchange TIE / TIDE / TIRE packets Efficient TIE propagation (w/o decode)
Node TIEs Positive disaggregation TIEs

Prefix TIEs Negative disaggregation TIEs

TIE database Key-value TIEs

TX/RTX/REQ / ACK queues External TIEs

Flooding procedures Policy-guided prefixes

Flooding scope rules (N, S, EW) Setting sent overload bit

South-bound default route origination Clock comparison
Honoring received overload bit
Interoperability with vendor RIFT

FT Opén Source Implementatia Up@ate (Bruno \Ij’m__%h)".

Current status: route calculation

Not Complets

- Routing Information Base (RIB)

Forwarding Information Base (FIB)
North-bound SPF

South-bound SPF

East-west forwarding

Positive disaggregation procedures
Negative disaggregation procedures
Optimized route calculation on leafs
Fabric bandwidth balancing

Label binding / segment routing

“« W TR_—— -
Source Implementation Uptiate (Bruno'Rijsman)
~ N X 3

Current status: management

Not Complets

Configuration file Configuration commands SSH CLI client
Telnet CLI client Command history Command completion
Operational commands Command help YANG data models

Documentation
Multi-node topologies

Logging

=

2D

n Uptiaie (Bruno'k

Current status: development toolchain

Automated unit tests 100% code coverage
Automated system tests Wireshark dissector
Automated interop tests

Travis continuous integration (Cl)
Codecov code coverage (~ 80%)
Strict pylint

Finite state machine (FSM) framework
Visualization tool

=

te (Bruno'Rijsman)

RIFT Op@ Source Implementation Uk

Protocol issues discovered (and fixed)

* Multi-neighbor oscillation
« Connecting 3 RIFT nodes to a LAN causes traffic spike (LIEs)
* Two flavors: amplified and non-amplitied
« Caused by “triggered loops” in the finite state machine
 Solution: new multi-neighbor state

* Flooding oscillations
* |In stable topology, you should only see TIDEs, not TIREs or TIEs
» We observed persistent “oscillations” of TIRE and TIE messages
* Various variations of the problem observed
* Solution for now: tweak the flooding scope rules
« Considered for future: explicit flooding scope in TIE header

e Other minor issues (not discussed here)

Multi-neighbor scenario

Multi-point LAN is not supported by RIFT
But could happen by accident.
How does the protocol behave?

Multi-neighbor traftic explosion

[NON | Wireshark - 10 Graphs - wireshark_pcapng_en0_20180811085257_XzCYJQ

Wireshark 10 Graphs: wireshark_pcapng_en0_20180811085257_XzCYJQ Conn eCt 3 n od es to L AN.
Traffic spikes to line rate
All LIE messages

900 -

750 -

600 -

450 -

Packets/s

300 -

150 |-

Click to select packet 15 (1s = 10).

Name Display filter Color Style Y Axis Y Field Smoothing
All packets . Line Packets/s None
TCP errors tcp.analysis.flags . Bar Packets/s None

+ (|- m Mouse @ drags | zooms Interval 1 sec ~ Timeofday | Log scale Reset

Multi-neighbor amplified oscillation

peuLracReL (1
Transition| }IMER_TICK [bkE_WAY] > SEND LIE [I Rit| L1 |tk dkE c der=Packe \IU I l| bcolPacket |
packet der(le 1 fil TIPLE_NET | \|I\ |\|\|w!|||\|\ i
(“L P (le Push I1E|: \ LN AL | [.IIIII uFmATING ©
SEND_LIE [ONE[WAY] > send lie [No 1 sHbcolpacket) | | \!“ | !" lPush NEIGH
Transition| TIMER TICK [ONE_WAY] " : I ATING CLIEN
TX LIE P >1Packet (header=Pac 5 EIVED A Y " ' I '" [COMPUTE_ rransitic
@ Transition| $END_LIE [ONE_WAY] > |i IGHBOR OFFEI e
Push TIMER TICK O ey vE & 3 ! I‘ | | \ TTER HAL [U ‘ TX LIE Px
I | H | HPUTATION Dl | ‘ Transitic
g Pr ,1Packet (h ‘ | - H IGHBOR OFF
acket(Pas refnsi] TWO_WAY x I“]‘ (O I|\
{FEVED x| LIE c ¥ der=Packe Ii i et (il ||H| II\I e
RX LIE ProtocolPac} Il EIVED o LD DOWN_EX
rdnsiftidn i BORS [TWC i III"\ I\ IIH| 1l
Push LIE_RECEIVED 1L | ‘ RX LIE Pro i MPUTATION_
Transition TIMER_TI OFFER I Push LIE R ransition
TX LIE ProtocolPac} u | 4! orren - ransition
p Transition SEND_LII itibH| [L1E_RECETV ‘, I ransition
H OFFER
LIE olPacket u IB_RBCEIVBD | ‘ ransition
iti o NER
IE_RECEIVED [ONE_WA! i TIPLE N i | ‘l _NEIGHBOR i ‘” i ‘i i der-Puckev
EW_NEIGHBOR [ONE_WA! kiw S8 o SRS (0 LGHHO [UPDATING colPackat(h | ke ¢l st ‘
ocolPacket (header=Pac hi 1 il THE HAL ATING CLI F BND_LIB [TW
JEND_LIE [TWO_WAY] > hbit A IJF B [COMPUT Push NEIGHE(RX LIE P:
Push NEIGHBOR_OFFER P P IGHBOR OF ‘ ‘ Push LIE_
- Transition
siltich [METTER HAL ‘
Transition LIE_RECE | - TX LIE Pro ol ‘
Transition NEW_NEIC o — ‘ Transition l ! ” ' I NE_WAY] :
TX LIE ProtocolPac} Ji HIGHBOR_OFFEI ' l " “ \'\"“h“ H” I der=Packe!
§ Transition SEND LI LIE P olPacket §ST HAL [UPD HIH\.IHHIlII\I HII H = fom
|
NHIGHBOR OFFER [UPDATI h|[LIE [RECEIVED LD DOWN_EXP! ‘ } H -
rransition NEIGHBOR_ RX LIE P It it Hhf MPUTATION DI .
gender=PacketHeader (le
ader=PacketHeader(le Push LIE ll ransition 1 ‘ rransitic
ell| fErE OFFER | \ rransitic
ransition I
RX LIE ProtocolPac) | A TX LIE Pz
) ransition (M\
Push LIE_RECEIVED ii4ign| L.IE_RECEIV 1] Transitic
] - I bH fehder=PacketH
@ Push NEIGHB m 44 | NEIGHE L [k I|I ![I ’ ! ‘li‘ \:u.‘w H\Il |\IH‘ [UPDATING.
|
1% [PrbtocolPacket II\ “' b oorpacket (h | | | I || ATING CLII
Transit ONE_WAY] > process_ . | » ||| |M N IH H
Thehsiti END_LIE [Il ! EIVED il wh 8 i TE_BEST_OF
Transitfipn HBOR [ONE_WAY] > SEND_LIE = 3 \III ‘|I IIH I
e e mtmivamaa i & Push NEIG Jh R | UTE

(Bruno Rijsmag)

Cause of multi-neighbor oscillation

X receives LIE from Y Each Cycl.e:
Event New Neighbor e Xreceives 1 LIE fromY

Action Multicast LIEto Y and z |* Xreceives 1 LIE from Z
e X multicasts 2 LIEs

« Each is received by both Y and Z
* Y sends 1 LIE, receives 2 LIEs from X

ONE WAY TWO WAY (and also 2 LIEs from Y)
e Zsends 1LIE, receives 2 LIEs from X

(and also 2 LIEs from Y)
X receives LIE from Z * All actions triggers by packets

Event Multi-Neighbor * No timers involved
Action Multicast LIE to Y and Z

State State

Cause of multi-neighbor oscillation

Exponential growth of number
of LIE messages

FSM oscillates as fast as it can,
not constrained by timer ticks

L

Each Cycle:

X receives 1 LIE from Y

X receives 1 LIE from Z

X multicasts 2 LIEs

Each is received by both Y and Z

Y sends 1 LIE, receives 2 LIEs from X
(and also 2 LIEs from Y)

Z sends 1 LIE, receives 2 LIEs from X
(and also 2 LIEs from Y)

All actions triggers by packets

No timers involved

Solution: new multi-neighbor state

X receives LIE from Y X receives LIE from Z
Event New Neighbor Event Multi-Neighbor

State State State

ONE WAY TWO WAY MULTI-NEIGHBOR

“Cool-down” timer expires

%
o,
"l

RIET OpentSource Implemehta’%iorﬁ" ate (Bruno Rij man)

Flooding oscillation

Node 1
Level 1 "“"
North

~ 16-Oct-2018

TIDE

______ R
f f 1 i f
TIRE TIDE | TIRE TIDE | TIRE TIDE | TIRE TIDE | TIRE
IE TIE TIE IE TIE

Flooding oscillation #1 Step 1: Node 2 send TIE

Dir = North —
Originator = 2
Node 1 Type = Node
Level T uy i 2k iaaiaiail Attt A TIE Nr = xxx
North 1 1 Seq Nr = o

Step 2: Node 1 sends TIRE

TIRE TIDE |TIRE TIDE | TIRE TIDE | TIR ACKSs received TIE
o\ North:2:Node:xxx:yyy

\ 1 | 1

TIE TIE TIE Step 3: Node 1 sends TIDE
Is missing TIE header:

1 | 1
Step 4: Node 1 sends TIDE

Node 1 retransmits TIE
Back to step 1

Flooding oscillation #2

Node 1

oo I T T T S B B

TIDE TIDE

 240ct-2048 v

Flooding oscillation #2

Step 1: Node 1 send TIDE

Announces a TIE header:
North:1:Node:xxx:yyy

Node 1

Level 1
North

Step 2: Node 2 sends TIRE

TIDE T1iIDE | Node 2 does not have TIE
Node 2 requests TIE

Step 3: Node 1 does NOT send TIE
The flooding scope rules don’t allow
node 1 to send the requested TIE

______ Voo l |

Step 4: Node 3 resends TIRE

TIRE TIRE TIRE TIRE TIRE T

Node 1 retransmits TIRE
Back to step 2

-iiﬁe (Bruno Riy maQ)-
P o « P

.

Solution for flooding oscillations

* The flooding scope rules are “sensitive”

* A tiny change in the rules can have unanticipated consequences
(e.g. oscillations)

* The rules for TIE flooding, TIDE contents, and TIRE contents must
be consistent (which much more non-trivial than one would guess)

* Solution for now: tweak the flooding scope rules
» Considered for future: explicit flooding scope in TIE header

* For more details see http://bit.ly/rift-tlooding-oscillations

RIET OpentSource Implementation Updtme (Bruno Rij man)
-t " = e - e ¢

oy e TR N

http://bit.ly/rift-flooding-oscillations

Interoperability testing

* Run RIFT-Vendor in one process (publicly available)

* Run RIFT-Python in another process

* Both use common “topology file”

* Specifies the topology of the complete “network under test”
* Specifies which nodes are run by RIFT-Vendor and which by RIFT-Python

* Interoperability testing is fully automated
* Run full suite of system tests
 For each system test, try all permutations of Vendor / Python nodes

* So far, successfully completed interop testing for:
* Adjacency establishment and automatic level determination
* Flooding (not automated yet)

Upd
-
> &

RJF:I' OpentSource Implementatio

& (Bruno Rijsman):

Conclusions

* Open source RIFT-Python implementation has helped the draft
progress
 Editorial improvements
* Protocol improvements

* Interoperability testing at a very early stage has flushed out issues

* Visualization tool is essential to understand the protocol behavior

* Weekly RIFT calls are essential (the deep discussions happen here)
« Additional contributors (pull requests) for RIFT-Python are welcome

s

RIET OpentSource Impleme"nta%ion»‘ g (Bruno Rijsman) &
.*_g“ a s - . “‘a

Fo
oy o .
e T o=

